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Abstract
Electron correlation effects in Fe are analysed using a first-principles linear
combination of atomic orbitals scheme. In our approach, we first use a local
orbital density functional solution to introduce a Hubbard Hamiltonian without
fitting parameters. In a second step, we introduce a many-body solution to this
Hamiltonian using a dynamical mean-field approximation. Our analysis shows
that magnetism in Fe is an effect associated with the first atomic Hund’s rule.
Moreover, we also find important correlation effects in the Fe spin-polarized
density of states. The photoemission spectra can be explained using a value of
U eff as large as 4 eV, provided that the satellite peaks appearing around 3–5 eV
below the Fermi energy are interpreted appropriately.

The electronic properties of ferromagnetic metals are still a subject of controversy [1–3].
Although density functional theory-local density approximation (DFT-LDA) calculations yield
the correct magnetization for the itinerant-electron ferromagnets Fe, Co and Ni, the origin
of ferromagnetism in these metals and the role of electron correlations are not completely
understood (e.g. see [4, 5]); in particular, the relative importance of the local Coulomb
interaction for d orbitals, U eff , versus intra-atomic exchange (first Hund’s rule) is not
completely established. Even from an experimental point of view, there is a lack of agreement
on whether or not a satellite peak exists in the photoemission spectrum of iron around 5 eV
below the Fermi energy [2].

In the conventional view of itinerant ferromagnetism [6], spin polarization is determined
by the Stoner parameter, I , that defines the energy of the atomic d orbitals as (Ed − Ind), nd

being the occupation number of the orbital under consideration. In the case of Fe, DFT-LDA
calculations yield a value I = 3.9 eV [7], and a surprisingly large value of U eff ∼ 4–6 eV [8, 9]
for the effective Coulomb interaction between the d electrons. Since the atomic-like properties
of the d states are of crucial importance for the magnetic properties of these materials, linear
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combination of atomic orbitals (LCAO) methods provide the appropriate conceptual framework
for understanding those properties and for analysing the role of electron correlations. In LCAO
theories of ferromagnetism, including Hubbard Hamiltonians, I is written as (Ũ eff +4J x) [10],
where J x defines the screened intrasite exchange interaction between the atomic d electrons
having the same spin; it is commonly accepted that J x practically coincides with its atomic
value [8]. In the case of Fe, J x = 0.83 eV and, therefore, we should take Ũ eff ∼ 0.6 eV
to recover the value I = 3.9 eV that corresponds to the correct magnetization. This result
suggests the presence of dramatic electron correlation effects in Fe,which would be responsible
for the renormalization of U eff from ∼5 eV to Ũ eff ∼ 0.6 eV. On the other hand, the value
of U eff inferred from the photoemission spectra [11–13] by identifying photoemission peaks
with quasi-particle peaks yields U eff ≈ 2 eV [1, 9]. This result seems to indicate that electron
correlation effects for Fe are not strong, in contradiction to the previous analysis.

The purpose of this letter is to show that these apparent contradictions disappear once
electron correlation effects [14] are properly analysed using a first-principles LCAO scheme.
In our approach, reminiscent of the LDA+U scheme [15], we first formulate a local density (LD)
solution for a generalized Hubbard Hamiltonian. This LD solution provides the link between
the generalized Hubbard Hamiltonian and local orbital DFT-LDA methods, allowing us to
obtain that Hamiltonian from first principles, without having to introduce fitting parameters.
In a second step, we introduce a many-body solution for the Hubbard Hamiltonian using a
dynamical mean-field (DMF) approximation [16]: in this way we analyse the spin-polarized
electron density of states (DOS) for Fe and compare it with the experimental evidence [11–13].
From our analysis, we obtain two different results. First, using our LD solution for the Hubbard
Hamiltonian, we show that electron correlation effects screen strongly the effective Coulomb
interaction contributing to the Stoner parameter: in this scenario, Ũ eff is not larger than 0.6–
0.7 eV. We find, however, that the effective interaction appearing in the Hubbard Hamiltonian
is around 4 eV, in reasonable agreement with other first-principles calculations [8, 9]; using this
value and the many-body techniques mentioned above, we also find that the spin-polarized
DOS for Fe is in good agreement with the photoemission data, provided that we interpret
appropriately the satellite peaks appearing in the spectrum around 3–5 eV below the Fermi
energy [9].

Our starting point is the generalized Hubbard Hamiltonian:

Ĥ = Ĥ O E + 1
2

∑

i,ασ �=βσ ′
Ui n̂iασ n̂iβσ ′ − 1

2

∑

i,ασ �=βσ
J x

i n̂iασ n̂iβσ + 1
2

ασ,βσ ′∑

i �= j

Jiα, jβ n̂iασ n̂ jβσ ′, (1)

where Ĥ O E defines a one-electron contribution and Ui and Jiα, jβ are the intrasite and intersite
Coulomb interactions between different orbitals φiα and φ jβ (for the sake of simplicity, Ui

is an average of the different interactions inside the i -site); we also introduce the intrasite
exchange Coulomb interaction, J x

i , associated with the first atomic Hund’s rule. Equation (1)
has been written in an orthogonal local basis, φiα , defined by Lowdin’s transformation
φiα = ∑

jβ(S
−1/2)iα, jβψ jβ , ψ jβ being the local basis used in the DFT-LDA calculation from

which we obtain Hamiltonian (1), as explained below (Siα, jβ is the overlap between orbitals
ψiα and ψ jβ).

The LD solution of Hamiltonian (1) is obtained by introducing the kinetic and many-body
energies of the system as a function of the orbital occupancies, niασ [17]. This implies that
the total energy is a function of those numbers, niασ , that play the role of the electron density,
ρ(r̄), in the conventional DFT approach. Then, we can write the following equation:

E[{niασ }] = T [{niασ }] + E H [{niασ }] + E XC[{niασ }], (2)

where T = 〈�0|Ĥ O E |�0〉, �0 being the ground state of the total LD Hamiltonian; E H is the
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Hartree energy and E XC is the exchange–correlation energy associated with Hamiltonian (1).
On the other hand [17],

E X [{niασ }] = − 1
2

∑

i,ασ �=βσ
J x

i niασ niβσ − 1
2

∑

iασ

Ji niασ (1 − niασ ), (3)

an equation that yields the exchange energy as the sum of an intrasite contribution and of the
intersite interaction between the electron charge, niασ , and its hole, (1−niασ ). In this equation,
Ji is practically the Coulomb interaction between charges located in nearest-neighbour atoms.
Because of the crystal symmetry, we assume that no exchange hole appears in the atom where
the electron is located. On the other hand, we have also shown [17] that the correlation energy
is given by

EC [{niασ }] = − 1
2

∑

iασ

fi (Ui − Ji)niασ (1 − niασ ) (4)

where (Ui − Ji) is an effective intrasite Coulomb interaction between i -site orbitals. In
equation (4), fi (0 < fi < 1) measures the fraction of the exchange–correlation hole that
is transferred to the atom i due to intrasite correlation effects. Equations (2)–(4) allow us
to substitute Hamiltonian (1) for an effective Hamiltonian where, instead of the many-body
terms, we introduce the local potentials (V H

iασ and V XC
iασ ) given by

V H
iασ = ∂E H [{niασ }]

∂niασ
=

∑

βσ ′ �=ασ
Ui niβσ ′ +

∑

jβσ ′( j �=i)

Jiα, jβn jβσ ′ (5)

V XC
iασ = ∂E XC [{niασ }]

∂niασ
= −

∑

β �=α
J x

i niβσ − Ji (
1
2 − niασ )− fi (Ui − Ji )(

1
2 − niασ ), (6)

where fi has been assumed to be constant.
This is the main result of our LD analysis and shows how to reduce the generalized

Hubbard Hamiltonian, equation (1), to an effective one-electron Hamiltonian, taking into
account all the many-body contributions. Conversely, we can use this equivalence to go from
a LD solution to a generalized Hubbard Hamiltonian: assume that we solve the conventional
DFT-LDA equations for a given crystal (say, paramagnetic Fe) using a local orbital basis (as
is done in the Fireball [18] and Siesta [19] codes); then, we can subtract from the one-electron
levels associated with the orthogonalized orbitals, φiα , the potentials given by equations (5)
and (6). This difference defines Hamiltonian H O E in equation (1), and allows us to introduce
the Hubbard Hamiltonian by means of the interactions U , J and J x . Notice that in this
approach we have to calculate these interactions using the orthogonalized orbitals, φiα . In
our actual calculations, we have employed the Fireball code for paramagnetic Fe and used the
corresponding local orbital basis.

Ferromagnetic Fe has been analysed in our LD approach by looking for a magnetic solution
where some charge is transferred between spins up and down. This implies that self-consistent
potentials, Viα↑ and Viα↓, should appear for different spins, in such a way that

Viα↑ = Ui(Ni − niα↑) +
∑

jβσ ′ ( j �=i)

Jiα, jβn jβσ ′ − J x
i (Ni↑ − niα↑)

− Ji(
1
2 − niα↑)− fi (Ui − Ji )(

1
2 − niα↑) (7)

where Ni is the total charge in the d orbitals for the i -site, while Ni↑ represents the total spin-up
charge. Notice how the terms contributing to Viα↑ correspond to the Hartree, the intra-atomic
exchange, the extra-atomic exchange and the correlation contributions, respectively. Due to
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the magnetic polarization, we find changes in the many-body potential w.r.t. the paramagnetic
solution. This yields

δViα↑ = −(1 − fi )(Ui − Ji)δniα↑ − J x
i (δNi↑ − δniα↑) (8)

where the total charge, Ni , has been assumed to be constant and independent of the atomic
magnetization. Equation (8) defines how the iα ↑-level depends on the atomic polarization,
δniα↑. This quantity should be obtained self-consistently by means of a band-structure
calculation whereby the atomic charges, δniα↑, are a function of δViα↑. These two conditions
yield δniα↑ and the crystal magnetization. Equation (8) allows us, however, to calculate directly
the Stoner parameter, I , which we define as |δViα↑/δniα↑|. Equation (8) yields the following
result:

I = (1 − fi )(Ui − Ji) + 4J x
i (9)

assuming δNi↑ = 5δniα↑, as corresponds to d orbitals. In our calculations for Fe, we find
Ui = 14.7 eV (taking into account atomic relaxation), Ji = 6 eV and J x

i = 0.83 eV.
A word of caution should be introduced here, because in our discussion we have neglected

an effect that leads to a further reduction in the effective interaction between orbitals. This
is associated with the sp-band screening that has been shown by other authors [8] to reduce
(Ui − Ji) = U eff

i to values close to 5 eV. In our calculations, performed introducing a Lindhard
dielectric function, we have found that U eff

i is reduced to 4.0 eV. If we introduce this value
in equation (9) and take fi = 0.83 (the value that corresponds to this reduced interaction),
we find I = 4.0 eV, in good agreement with DFT-LDA calculations. We have also analysed
how I depends on U eff

i by calculating fi for different intrasite Coulomb interactions. Our
results show that, in the 2–5 eV range, (1 − fi )U eff

i is almost insensitive to the values of
U eff

i . These results show that the Stoner parameter is mainly controlled by J x
i ; in other words,

ferromagnetism in Fe is an effect mainly associated with the intra-atomic first Hund’s rule.
Next, we calculate many-body effects introducing a local self-energy,
iασ (ω), within the

DMF approximation. This is a reasonable approximation, considering that correlation effects
in Fe are associated with the intrasite Coulomb interaction between d orbitals. As discussed
in [17],
iασ (ω) is calculated by means of an appropriate interpolation between two limits:

(1) first, we calculate the atomic limit, assuming U eff
i much larger than the metal bandwidth;

(2) second, we obtain the second-order self-energy,
(2)
iασ (ω), using as the expansion parameter

U eff
i ;

(3) finally, we calculate the self-energy by interpolating between these two limits.

We should stress that, in this solution, 
(2)
iασ is calculated using the local DOS defined by

the LD solution discussed above. Finally, we replace V c
iασ , in our effective LD Hamiltonian, by

that self-energy; then, we use a conventional Green-function formalism to calculate the LD of
states. At this point, we should comment that consistency between the LD and the self-energy
formulations imposes the following Luttinger sum rule: V c

iασ = 
iασ (EF ). The factor fi in
equation (4) has been determined from this equation, this procedure satisfying the Luttinger
condition automatically. The price that we have to pay is the introduction of a self-consistent
loop in the calculation.

Figure 1 shows our calculated LD and many-body DOS for ferromagnetic Fe. The
comparison between these two densities of states shows that correlation effects are important
for Fe: first, we notice that the energy difference between the two maxima appearing in the
spin-up and spin-down DOS for the LD solution is reduced by almost a factor of two in the
many-body case (for comparison, see [5] where U = 2.3 eV is used). This is a typical band-
narrowing effect appearing around EF and associated with a highly correlated electron gas.
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Figure 1. The total Fe spin DOS for the many-body solution with U eff = 4 eV (continuous curve)
and for the DFT-LDA solution (dashed curve). Notice the shift of the peaks towards EF when
correlation effects are introduced.
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Figure 2. The spin DOS, split into the t2g and eg components, at the P point for Fe. The positions
of the DFT-LDA eigenvalues are indicated by arrows. Notice that the t2g (up) state (black squares)
has lost its quasiparticle character.

On the other hand, we also find that the DOS structure at energies far away from EF is strongly
modified by the many-body solution; in particular, a new satellite structure appears around
5 eV below EF . We analyse these many-body effects in more detail by considering the DOS
for a particular 	k-vector: we have chosen the P point, a point for which there are high-quality
photoemission data taken along the (111) direction [12, 13].

Figure 2 shows the electron DOS for this 	k-vector split into the t2g and the eg components,
and the energy levels corresponding to the DFT-LDA solution for this 	k-point. In this figure
we also find the effects already discussed in relation to figure 1: the eg (up) and t2g (down)
levels located 0.6 and 2.1 eV below EF are shifted to around 0.4 and 1.4 eV, respectively. In
both cases, we also find some satellites at higher binding energies due to many-body effects.
The other t2g (up) level located 3.1 eV below EF is completely smeared out by the self-energy,
giving rise to two features: one almost coincides in energy with the t2g (down) peak; the other
is a very broad peak located around 4.5 eV below EF . For energies above EF , we find the eg

(down) level, located 1.4 eV above EF , shifted by many-body effects to 0.9 eV. In figure 3 we
compare these results with photoemission data [12, 13], by considering the appropriate weight
that each state has in the photoemitted electrons. This is done assuming the final state to be
a plane wave; in this way we find that, for the P point, the t2g levels are reduced in intensity



L426 Letter to the Editor

-10 -8 -6 -4 -2 0 2 4 6
0

5

10

15

20

25

e
g

DW

t
2g

e
g

e
g

t
2g

e
g

UP

t
2g

DW

DFT-LDA

Experiment

D
O

S
(H

ar
tr

ee
-1
)

ω (eV)

Figure 3. Quasiparticle spectra (considering the appropriate weight for each state; see the text)
at the P point for Fe. Black arrows indicate the eigenstates of the DFT-LDA Hamiltonian.
Experiments [12, 13] show three well-defined peaks close to EF and a very broad feature around
3 eV below EF traditionally interpreted as the t2g (up) state (grey arrows).

by a factor of 3 w.r.t. the eg levels. Comparing this DOS with the photoemitted spectra, we
clearly see that the two peaks below EF (at 0.4 and 1.4 eV) are related to the eg (up) and t2g

(down) states calculated in the LD approach, while the peak above EF (at 0.9 eV) corresponds
to a eg (down) level; these results are in reasonable agreement with the experimental data
of [12, 13]. More importantly, we find that the very broad peak located around 3–4 eV below
EF cannot be related directly to the t2g (up) states found in the LD approach around 3.1 eV
below EF [12]. On the contrary, our results clearly show that this peak is a satellite structure
created by many-body effects and appearing as a result of combining the tail intensities of eg

and t2g states (see figure 2, and remember the factor 1/3 we have to introduce in the weight of
the t2g states).

This analysis clarifies several contradictory points regarding the magnetism of iron. Our
results show that we can find a reasonable agreement between theory and photoemission data
for U eff as large as 4 eV. The reason that a value of U eff 
 2 eV has been used in the
interpretation of these data is the tendency to identify the broad satellite peak, located around
3 eV below EF , at the P point, with the quasiparticle level that in DFT-LDA appears around
3.1 eV below EF . Our results show, however, that this quasiparticle level has lost its identity
due to correlation effects and that it has been modified into a smeared DOS; this new DOS tends
to create a satellite structure that should be reinterpreted as due to many-body effects and not
as a quasiparticle level reminiscent of the DFT-LDA level. This same effect is also responsible
for the satellite peak that we find in the total DOS (see figure 1) around 5 eV below EF .

In conclusion, we have studied the electronic properties of ferromagnetic Fe using a first-
principles LCAO scheme to analyse in detail the role of electron correlations. We find that the
correlation potential strongly screens the magnetic effects commonly associated with a local
Hubbard interaction: magnetism in Fe is an effect associated with the first atomic Hund’s rule.
Moreover, we also find important correlation effects in the spin-polarized DOS. In particular,
our analysis shows that the t2g (up) levels located 3.1 eV below EF have lost their quasiparticle
identity, due to many-body effects, and tend to create a satellite structure that has been observed
experimentally.

This work has been partly funded by the Spanish CICYT under contract no PB-97-0028. FF
thanks N H March for an illuminating discussion.
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